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Abstract. We study flocking in one dimension, introducing a lattice model in which particles
can move either left or right. We find that the model exhibits a continuous non-equilibrium phase
transition from a condensed phase, in which a single ‘flock’ contains a finite fraction of the particles,
to a homogeneous phase; we study the transition using numerical finite-size scaling. Surprisingly,
in the condensed phase the steady state is alternating, with the mean direction of motion of particles
reversing stochastically on a timescale proportional to the logarithm of the system size. We present
a simple argument to explain this logarithmic dependence. We argue that the reversals are essential
to the survival of the condensate. Thus, the discrete directional symmetry is not spontaneously
broken.

Flocking—the collective motion of a large number of self-propelled entities—is a behaviour
exhibited by many living beings such as birds, fish and bacteria. Generically, flocks are driven,
non-equilibrium systems with many degrees of freedom and as such they have recently attracted
much attention in the physics community [1–7].

Vicsek et al [1] introduced a simple microscopic model in dimensionsd > 2 in
which particles move with a constant speed; they interact only by tending to align with their
neighbours. Simulations [2] and a continuum theory [3] showed the existence of a low-noise
ordered phase in which the mean velocity of the particles is non-zero, i.e., a phase in which
the rotational symmetry of the model is spontaneously broken.

Flocking in one dimension (1D) is less relevant to biological systems than in higher
dimensions, but is nevertheless interesting from a fundamental viewpoint. The models studied
to date ind > 2 possess a continuous (rotational) symmetry. The 1D case is necessarily
different—since particles are constrained to move either left or right on a line, the underlying
directional symmetry is discrete. Czirók et al [5] have introduced an off-lattice model of 1D
flocking in which particles with continuous velocity variables move on a line. Particles tend
to move in the same direction as their neighbours but ‘errors’ are made due to the presence of
noise. Simulations and a continuum theory indicate that a continuous phase transition occurs
as the noise or particle density is varied [5], the ordered phase being characterized by the
presence of a large ‘flock’.

When a phase transition occurs from a disordered to an ordered phase, it is usually
accompanied by spontaneous symmetry breaking; in the ordered phase, the spontaneously
broken symmetry is accompanied by ergodicity breaking in the thermodynamic limit. In an
ordered system with discrete symmetry, such as the Ising model ind > 2, one expects the
‘flip time’—the time the system takes to move from one symmetry-related state to another—to
diverge exponentially with system size.
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Figure 1. Space–time plots of steady-state systems with (a) η = 0.2 and (b) η = 0.02. In both
cases,ρ = 1 andL = 1000. A darker grey level indicates a higher particle density. There is one
timestep between each snapshot in (a) and 5 in (b).

In this work we study a simple lattice model of flocking in 1D. We show, using finite-size
scaling, that the model has a continuous phase transition from a homogeneous to a condensed
phase. However, the condensed phase is not symmetry-broken, butalternating—we find that
the mean particle velocity alternates its sign on a timescale which grows only logarithmically
with system size; moreover, these reversals are essential to the maintenance of the order.

We now define the model that we study. We considerN particles on a periodic 1D lattice
of L sites. There is no restriction on the number of particles allowed at a site. The particle
density isρ = N/L. Each particle, labelled byµ, has a positionxµ ∈ {1, 2, . . . , L} and a
velocity (or direction)vµ = ±1. To update the system, a particle is chosen at random. Its
velocityvµ is flipped with probabilityWµ and thenxµ→ xµ + vµ. The flip probabilityWµ is
given by

Wµ = [1− (1− 2η)vµU(xµ)]/2 (1)

whereU(y) is the velocity of the majority of the particles (including particleµ) at sitey and its
two nearest neighbours; we takeU = 0 when there is no majority. In brief, particles acquire
the velocity of the majority of their neighbours with probability 1− η.

While our lattice model is somewhat simpler than the off-lattice model of [5], it is
conceptually similar. However, whereas the off-lattice model has only one source of noise
(a random perturbation added to the velocity of a particle at each timestep), the noise in our
model has two distinct sources. The first is due to the flipping of particle velocities and its
strength is parametrized byη; the second is due to the random sequential dynamics of the
model. Thus, unlike the off-lattice model, our model does not become deterministic in the
limit η→ 0.

Before showing that the model exhibits a continuous phase transition, we first discuss
the qualitative behaviour. Whenη is large, the system has a fairly homogeneous steady
state, illustrated in figure 1(a) by a space–time plot forη = 0.2. However, whenη is small,
‘condensation’ occurs—a large fraction of the particles are contained in a single large flock,
which we refer to as thecondensate. A space–time plot of the steady state forη = 0.02
is shown in figure 1(b). The direction of motion of the condensate reverses at fairly regular
intervals. These reversals are sometimes, but not always, triggered by a collision with a smaller
flock travelling in the opposite direction. Just after the condensate has reversed its direction,
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Figure 2. (a) Log-linear plot of〈T 〉 and〈T 2〉1/2 as a function ofL for η = 0.02 andρ = 1. The
straight lines are fits to the data. (b) Log–log plot of〈T 〉 and〈T 2〉1/2 as a function ofη forL = 4000
andρ = 1. The solid lines are fits to the data forη 6 0.02 with exponents of−0.358± 0.01 and
−0.366± 0.01 respectively.

it is very dense. It then gradually spreads out, becoming more diffuse at the front than at the
back, before reversing again. The steady state clearly has no time-reversal symmetry and is
alternating, by which we mean that the system reverses its mean velocity at stochastic intervals.
A quantity measuring the spatial order in the system, such as the variance of the number of
particles per site, decreases gradually as the condensate spreads, then increases suddenly as
the condensate ‘flips’, before decaying again.

If a condensate were never to reverse its direction of motion, it would eventually become
so diffuse that it would cease to exist—the alternating character of the steady state is essential
for the existence of the condensate.

We now discuss the behaviour of the condensate in more detail. Letp(T )be the probability
that the condensate reverses its direction (i.e. that the mean particle velocity changes sign) a
timeT after the previous reversal. Figure 2(a) shows a log-linear plot of〈T 〉 and〈T 2〉1/2 as a
function of system sizeL for fixedη = 0.02. Both are proportional to logL.

Thus, while the mean time between reversals diverges in the thermodynamic limit, the
fact that the divergence is only logarithmic inL implies that spontaneous symmetry breaking
doesnotoccur. As we have seen, the condensate evolves inexorably (i.e. without time-reversal
symmetry) towards its next reversal. This contrasts with the usual scenario for spontaneous
symmetry breaking where reversals are purely fluctuation driven leading to reversal times that
are exponential in system size.

Figure 2(b) shows a log–log plot of〈T 〉 and〈T 2〉1/2 as a function ofη for fixedL = 4000.
Forη less than about 0.02, both〈T 〉 and〈T 2〉1/2 diverge as power laws inη. The data suggests
that the exponent, which we callλ, is the same in both cases with a value of−0.36± 0.01.
We have seen in figure 2(a) that〈T 〉 ∝ logL for fixedη andL large; we denote the constant
of proportionality byw(η). Figure 3(a) shows a log–log plot ofw(η) and a least-squares fit to
the data gives an estimate of−0.34± 0.02 for the slope; it seems likely that this is equal toλ
and so we conclude that〈T 〉 ∼ ηλ logL for largeL and smallη.

The fact that〈T 〉 and 〈T 2〉1/2 are both proportional to logL for fixed η, and both
proportional toηλ for fixed L suggests that the distribution of reversal times may have the
scaling formp(T ) ∼ f (T /〈T 〉)/〈T 〉 asymptotically for largeL and smallη. Figure 3(b)
shows the scaled distribution for various values ofL andη—the data collapse is fairly good.
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Figure 3. (a) Log–log plot ofw(η) for ρ = 1. The solid line is a fit to the data. (b) Log-linear plot
of the scaled reversal time distribution〈T 〉p(T ) as a function of scaled timeT/〈T 〉 for ρ = 1 and
various values ofL andη.

We now present a simple argument which may explain why a condensate containingN

particles flips direction in a time of order logN (or equivalently logL if the density is fixed)
for largeN . Consider a system in which, att = 0, allN particles are positioned atx = 0 and
have velocity +1. Letq(x, t) be the probability that a given particle in this initial flock has
positionx at timet . In the limit η→ 0, each particle hops forward with probability 1/N in a
time1t so that in the limitN →∞,1t = 1/N , the distributionq(x, t) is Poisson:

q(x, t) = e−t t x

x!
. (2)

For η non-zero, this distribution will be modified by the flipping of particle velocities. For
example, particles will leave the back of the condensate whenη is non-zero but here we neglect
this effect.

We now ask the following question: if some perturbation or fluctuation (due to collision
with a small flock or the spontaneous flipping of particles at the front of the condensate) should
cause all the particles in the condensate having positionx > z to flip velocity, will this in turn
cause the particles with positionx = z to flip? We make the approximation that the particles
with x > z form a ‘shock’ moving back through the condensate so that at timet they all have
positionz+1 and velocity−1. Then the particles with positionzwill flip if R(z, t) > 1, where

R(z, t) = 1

q(z− 1, t) + q(z, t)

∞∑
x=z+1

q(x, t) = t

z + t

∞∑
x=1

z! tx

(z + x)!
. (3)

For a given positionz we define a critical timetc(z) through the solution ofR(z, tc) = 1 so
that fort > tc(z), the particles at positionz are susceptible to flipping.

It is easy to see thatR(z, t + 1) > R(z+ 1, t) so that if the particles atz+ 1 are susceptible
to flipping (i.e. ifR(z+1, t) > 1) then those atz are subsequently also susceptible. Hence, the
reversal time of the entire condensate is determined by the time one must wait for the leading
particles to flip and it suffices to findtc(z) in the limit z→ ∞. It is straightforward to show
thatR(z, t)→ s2/(1−s2) asz→∞with t = sz; this implies thattc(z)→ z/

√
2. Therefore,

tc is approximately proportional toz for largez.
For a condensate containing a large but finite number of particlesN , we estimatez∗(N, t),

the position of the leading edge of the condensate, through the expressionq(z∗, t) = 1/N .
For the Poisson distribution whent ∝ z∗ we find thatz∗ ∼ logN . Therefore our estimate
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Figure 4. (a) 〈V 〉 as a function ofη for various system sizes withρ = 1. (b) UL(η) for various
system sizes in the vicinity ofηc, given by the common intersection point. The solid lines are cubic
polynomial fits to the data.

for the time at which the condensate becomes susceptible to reversal istc(z
∗) which, being

proportional toz∗, is of the order of logN .
Since this simple analysis makes the assumption that one can decouple the spreading of

the condensate and the fluctuations which may cause it to reverse its direction, it makes no
predictions about the non-trivialη dependence of the reversal time and the scaling behaviour
of the distribution of reversal times.

This completes our discussion of the condensed phase; we now turn to a numerical
finite-size scaling analysis [8] of the phase transition between the condensed phase and the
homogeneous phase for fixedρ = 1. We have performed Monte Carlo simulations for system
sizes betweenL = 50 andL = 2000, averaging over between 5× 106 and 2× 107 timesteps
in the steady state for each set of parameters. We have found that the absolute value of the
mean particle velocityV , defined by

V = 1

N

∣∣∣∣ N∑
µ=1

vµ

∣∣∣∣ (4)

is a convenient order parameter since, between reversals in the condensed phase, the majority
of particles have the same velocity, that of the condensate. During the long (butO(logL)) time
intervals between reversals,V fluctuates about some well-defined mean value. Figure 4(a)
shows a plot of〈V 〉 againstη for several different system sizes. The crossover from
the homogeneous to the condensed regime becomes sharper with increasing system size,
suggesting the presence of a continuous phase transition.

In calculating critical quantities, it is useful to define both the ‘static susceptibility’ and
the fourth-order cumulant [8], given respectively by

χ(L) = L[〈V 2〉L − 〈V 〉2L] UL = 1− 〈V
4〉L

3〈V 2〉L (5)

with the angle brackets indicating steady state time averages. In analogy with magnetic systems
we assume that, near criticality,〈V 〉 ∼ (ηc − η)β , χ ∼ |ηc − η|−γ andξ ∼ |ηc − η|−ν , where
ξ is the correlation length.

Standard finite-size scaling theory [8] leads to the following relations at criticality:

〈V 〉L ∼ L−β/ν χ(L) ∼ Lγ/ν UL = U ∗. (6)
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Figure 5. Estimates of (a) ν and (b) γ /ν, obtained using (7) and (8), plotted against 1/ logb for
various system sizes. The lines in both are guides to the eye.

The critical pointηc can therefore be identified as the value ofη at whichUL takes on its fixed
point valueU ∗. Figure 4(b) shows that the curvesUL(η) do indeed have a common intersection
point atηc = 0.1325± 0.001. Also, we findU ∗ = 0.30± 0.01.

The slopes of the functionsUL(η) atη = ηc can be used to calculate the critical exponent
ν since [8]

1/ν = log[(∂UbL/∂UL)|ηc ]/ logb + corrections to scaling. (7)

We have found thatUL(η) is approximately linear nearηc forL less than about 1000, allowing
a reasonably precise estimate of the derivative in (7). In figure 5(a) we plot estimates ofν
obtained using (7) against 1/ logb for variousL. Extrapolatingb→∞, thus taking account
of corrections to scaling, we estimateν = 2.57± 0.05.

The other independent exponentγ /ν is given by

γ /ν = log[χ(bL, ηc)/χ(L, ηc)]/ logb + corrections to scaling. (8)

Figure 5(b) shows the resulting estimates ofγ /ν plotted against 1/ logb for different values
of L. As before, we extrapolateb→∞ and estimateγ /ν = 0.451± 0.005.

The finite-size scaling formalism relies on the fact that the hyperscaling relationd =
γ /ν + 2β/ν holds [8]. Atη = ηc one can calculateβ/ν via

β/ν = − log[〈V 〉bL/〈V 〉L]/ logb + corrections to scaling. (9)

We were unable to estimateβ/ν as precisely asγ /ν but, within error bounds, we have found
that hyperscaling does indeed hold. Thus, our final estimates for the critical exponents are
β = 0.705± 0.02,γ = 1.16± 0.04 andν = 2.57± 0.05.

In [5] β was estimated (without finite-size scaling) for an off-lattice model of 1D flocking
to be 0.6± 0.05. While our value ofβ = 0.705± 0.02 is not in close agreement with this, it
is still possible that both models are in the same universality class. Measurement ofU∗ in the
off-lattice model would provide a good test of universality.

Above, we have used standard finite-size scaling to study the order parameter distribution.
The success of this approach is surprising when one considers that the order parameterV

does not fully reflect the alternating nature of the steady state in the condensed phase—the
‘spreading’ of the condensate is not captured.

We have argued that spontaneous symmetry breaking does not occur in our model and that
the reversal times areO(logL). This contrasts with equilibrium systems where reversal times
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exponentially large inL result from surmounting free energy barriers. It is difficult to see how
O(logL) reversal times could be explained in an analogous fashion; the reversal mechanism
is fundamentally non-equilibrium.

Finally, we comment on the effects of imposing a restriction on the local particle density
in our model; this is achieved by setting the maximum number of particles allowed on a
site to beM. Not surprisingly, we have found that for any finiteM < N , the condensed
phase is suppressed; instead, for smallη, the system forms ‘domains’ of maximally occupied
sites. Each of these domains comprises two competing sub-domains composed of particles
with velocities +1 and−1. The interface between the two sub-domains performs a random
walk as a result of the flipping of particle velocities and the dynamics resembles that of a 1D
ferromagnet.

We thank M E Cates for many useful discussions and a critical reading of the manuscript and
N B Wilding for helpful advice on finite-size scaling. MRE is a Royal Society University
Research Fellow.
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